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Abstract: Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney dis-
ease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering
compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventu-
ally, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed.
Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus,
parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the
Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required
for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial
production of the short-chain fatty acid butyrate. We review current knowledge on the relationship
between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of
special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota,
the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to
treat CKD-MBD through the clinical translation of concepts from other fields of science such as the
optimization of phosphorus utilization and the use of phosphate-accumulating organisms.

Keywords: chronic kidney disease; microbiota; phosphate; uremic toxins; phosphate binder; short
chain fatty acid; PTH

1. Chronic Kidney Disease (CKD) Concept and Global Impact

Chronic kidney disease (CKD) is currently defined as persistent (at least three months)
evidence of decreased kidney function or kidney injury [1]. Decreased kidney function is
diagnosed by an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2,
while the main, but not only criterion for kidney injury is pathological albuminuria. CKD
is associated with an increased risk for premature all-cause and cardiovascular death
and of progression to kidney failure requiring kidney replacement therapy [1,2]. CKD
is one of the fastest growing causes of death, projected to become the fifth global cause
of death by 2040 and the second before the end of the century in some countries with
long life expectancy [3,4]. It is also the most common risk factor for lethal coronavirus
disease 2019 (COVID-19) [5]. Factors involved in the adverse health outcomes associated
to CKD range from decreased kidney production of anti-aging factors, such as Klotho, to
accumulation of uremic toxins that are not properly excreted by the kidneys [6,7]. The diet
is a key source of uremic toxins or of molecules that are processed by the gut microbiota to
generate precursors of uremic toxins [8]. Excess dietary phosphate behaves as a uremic
toxin that needs kidney excretion. As kidney function is lost, the physiological adaptation
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to decreased phosphate filtration is one the drivers of CKD-mineral and bone disorder
(CKD-MBD) [9]. We now provide a comprehensive holistic and up-to-date review of the
bidirectional relationship of phosphate and phosphate binders to the gut microbiota in
the context of CKD and explore the potential contribution of this interaction to the gut
microbiota-CKD crosstalk [10]. Specifically, we discuss the modulation of CKD-MBD by
uremic toxins of bacterial origin, the impact of dietary phosphate and phosphate binders on
the gut microbiota, the interaction between vitamin D and parathyroid hormone (PTH) with
the microbiota and the potential therapeutic use of microbiota in CKD-MBD through the
concepts of optimization of phosphorus utilization and phosphate accumulating organisms.
We believe this is the first holistic approach to the topic as a 27 March 2021 PubMed search
of the terms phosphate, microbiota and kidney did not disclose any similar review.

2. CKD-Mineral and Bone Disorder (CKD-MBD)

CKD-mineral and bone disorder (CKD-MBD) is a systemic disorder triggered by CKD
and associated with bone disease, cardiovascular calcification and increased morbidity and
mortality [11,12]. It is diagnosed in the presence of biochemical abnormalities of serum
calcium, phosphate or PTH, bone abnormalities or cardiovascular or other soft-tissue
calcification as a consequence of CKD [13]. Adaptation to a lower phosphate filtration as
GFR decreases together with albuminuria- or inflammation-driven decrease in tubular
cell Klotho expression are key drivers of CKD-MBD [14,15]. Klotho is a transmembrane
or secreted protein expressed mainly by kidney tubules that is a coreceptor for the phos-
phaturic hormone fibroblast growth factor 23 (FGF23) [16]. The early decrease in kidney
Klotho expression and the need to excrete phosphate lead to a progressive increase in
serum FGF23 levels as GFR decreases. In proximal tubules, FGF23 decreases phosphate
reabsorption, thus promoting phosphaturia, and decreases calcitriol synthesis. Decreased
calcitriol availability will limit phosphate and calcium absorption in the gut. Additionally,
Klotho has FGF23-independent nephroprotective and anti-aging effects and excess FGF23
in the presence of low Klotho levels has adverse cardiovascular off-target effects. The
lower calcitriol concentration and the trend towards hypocalcemia due to decreased gut
calcium absorption promote PTH secretion and hyperparathyroidism. These adaptive
responses cause bone injury but prevent hyperphosphatemia (normal serum phosphate
range 2.5–4.5 mg/dL) until GFR is very low, at which point dietary phosphate restriction
and phosphate binders must be prescribed to limit phosphate absorption in the gut and,
thus, limit the adverse impact of hyperphosphatemia. Indeed, hyperphosphatemia in-
creases the severity of secondary hyperparathyroidism, leading to bone disease, vascular
calcification, and increased incidence of cardiovascular events and mortality [17,18]. In this
regard, hyperphosphatemia and the parallel increase of FGF23 are respectively involved in
the onset of vascular calcification as well as left ventricular hypertrophy [19].

3. Phosphate and CKD

Restricting dietary phosphate implies changing the diet while phosphate binder pre-
scription implies ingesting molecules that bind phosphate and potentially other nutrients,
while releasing other components to the gut lumen. While both maneuvers may theoreti-
cally modulate the gut microbiota, this has received scarce attention until recently [20].

3.1. Diet

In early CKD (GFR > 60 mL/min/1.73 m2), there are no randomized clinical trials that
support dietary phosphate restriction. However, Western diets contain 2- to 4-fold more
phosphate than the daily dietary reference intake for adults of 580 mg or the recommended
dietary allowance of 700 mg [21–23]. As pathological albuminuria, which usually defines
early CKD stages, is already associated with increased serum phosphate, likely as a conse-
quence of suppressed Klotho levels, it would make sense to at least avoid excess dietary
phosphate from very early in the course of CKD [14,15,24].
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In patients with GFR < 60 mL/min/1.73 m2, Kidney Disease: Improving Global
Outcomes (KDIGO) guidelines recommend reducing elevated serum phosphate levels to
the normal range by using phosphate binders and by limiting dietary phosphate intake [13].
Dietary phosphate is largely derived from high protein foods or food additives. Phosphate
from food additives is more readily (around 100%) absorbed, as it is in inorganic form.
By contrast, only 50% of organic phosphate in vegetables and around 70–80% of organic
phosphate in animal protein-rich products is absorbed. It is suggested that patients with
CKD avoid excess dietary protein, mix both animal and vegetable protein, and avoid
processed foods rich in phosphate-containing additives [17].

3.2. Phosphate Binders

Phosphate binders are the mainstay of pharmacological therapy for hyperphos-
phatemia in CKD patients [13,25]. They are usually prescribed at advanced CKD stages
when hyperphosphatemia is evident, but there is an ongoing reexamination of the potential
benefits of ‘preventive’ treatment of early phosphate overload in CKD patients [26,27].
Well designed, larger, long-term clinical trials are needed to respond this critical ques-
tion. Binders prevent phosphate absorption within the gut by binding an active cation to
phosphate, in exchange for another anion (e.g., carbonate, acetate, oxyhydroxide, citrate)
to yield a non-absorbable compound excreted in feces [25]. They are classified based on
the active cation composition into calcium-containing and calcium-free binders (Table 1).
Calcium-free binders may contain magnesium, metals or polymers. A key issue is patient
compliance, given the size and number of pills (although there are alternative presentations
for some binders) and the common gastrointestinal adverse effects. More than 75% of
hemodialysis patients adhered incompletely to phosphate binder prescription in a short
follow-up study [28].

Aluminum-containing phosphate binders are effective and well tolerated, but their
use is discouraged since the 1980s as they facilitate aluminum intoxication [13]. Calcium-
based phosphate binders became popular in the 1980s and 1990s, but they may induce
positive calcium balance, aggravate vascular calcification and increase mortality compared
to calcium-free binders [25,29]. The fact that they also provide a source of alkali (carbonate,
acetate) may compound the problem as a higher pH favors vascular calcification [30].
However, they are still widely used because of lower cost than more modern binders. High
dose calcium (in early clinical trials up to 17 g/day of calcium carbonate were prescribed)
may also cause precipitation of bile and fatty acids in the form of soap and decrease the
absorption of fat-soluble vitamins such as vitamin D and the microbiota metabolite vitamin
K, which inhibits vascular calcification [31,32]. However, current guidelines recommend
against high-dose calcium-based binders [13,33]. Magnesium carbonate results in a lower
calcium load and improved gastrointestinal tolerability [25]. Moreover, magnesium inter-
feres with hydroxyapatite crystal formation and in rats, magnesium carbonate reduced
both serum phosphate and aortic calcification [34].
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Table 1. Key phosphate binders.

Drug Usual Dose 1 Advantages Disadvantages Characteristics

Calcium-based binders

Calcium carbonate 500–1250 mg
(3–12 tablets) Effectiveness.

Non evidence of influence in gut microbiota.
Hypercalcemia and vascular calcification.

Gastrointestinal: constipation, nausea, vomiting.

Election therapy in 1980–1990s.
Reduce carboxylation of matrix

g-carboxyglutamate protein, a protein that
inhibits calcification.Calcium acetate * 667 mg

(6–12 capsules)

Magnesium-based binders

Magnesium carbonate * 63 mg
(2–6 capsules)

Lower calcium overload and vascular calcification.
Gastrointestinal tolerability.

Diarrhea.
Hypermagnesemia.

Experimental data suggests that
magnesium interferes with hydroxyapatite

crystal formation.

Polymeric binders

Sevelamer hydrochloride 800–1600 mg every 8 h
Nonproducing calcium overload.
Improves endothelial functions.

Reduces bile salt absorption

High bill burden.
Gastrointestinal tolerability.

Interference in absorption of fat-soluble vitamins.
High costs.

Exchange of carbonate or HCl for Pi.
First non-metal phosphate binder.

Large cross-linked cationic polymer.Sevelamer carbonate 800–1600 mg every 8 h

Bixalomer 250 mg
(6–14 tablets)

Gastrointestinal tolerability.
Less water absorption

Better fluidity.
Non available.

Amine-functional and
non-absorbable polymer.

Only in Japan.

Metal-based binders (non-iron)

Aluminum-based 640 mg
(5–6 tablets) Gastrointestinal tolerability.

Aluminum intoxication: encephalopathy,
osteomalacia, microcytic anemia and

premature death

First available binder
Use strongly discouraged by

KDIGO guidelines.

Lanthanum carbonate 250–1000 mg
(3–6 chewable tablets)

Lower pill burden.
Gastrointestinal tolerability.

Accumulation in bone in dialysis patients.
Low solubility.

First calcium-free chewable
phosphate binder.

Detaches carbonate and forms a
lanthanum-phosphate complex.

Metal-based binders (iron)

Ferric citrate 210 mg
(4–5 tablets)

Lower pill burden.
Improves iron parameters.

Gastrointestinal tolerability: diarrhea,
nausea, vomiting.

Altered gut microbiota

Forms a non-soluble
ferric-phosphate complex.

Sucroferric oxyhydroxide 500 mg
(2–6 chewable tablets)

Less gastrointestinal effects than ferric citrate. Less
alteration of gut microbiota. Lower pill burden.

Polynuclear chewable iron-based
phosphate binder.

1 Usual dose based on leaflet information and [25]. * Calcium acetate and magnesium carbonate may be combined in a single pill. KDIGO: Kidney Disease: Improving Global Outcomes. Bold identified families
of phosphate binders.
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Sevelamer, the first non-metal-containing phosphate binder, launched in 2001, is a
large cross-linked cationic polymer and non-absorbable anion exchange binder available
as sevelamer carbonate or hydrochloride [25]. In addition to phosphate, sevelamer may
bind endotoxins, gut microbiota-derived metabolites, advanced glycation end products
and bile salts, consequently decreasing serum low-density lipoprotein (LDL) cholesterol
and inflammatory markers in dialysis patients [25,35–38]. Of these, the most prominent
effect is the reduction in LDL-cholesterol, to the point that this is used by clinicians to
assess compliance. There are multiple studies addressing the potential consequences of
sevelamer binding molecules beyond phosphate. Sevelamer may interfere with absorption
of fat-soluble vitamins (D, K) [31,36] and has been associated with evidence of vitamin K
deficiency, such as menaquinone MK4 deficiency and increased non-phosphorylated uncar-
boxylated matrix-Gla protein (dp-ucMGP) [39,40]. These defects were recently described
in a cross-sectional study in association with a wider disturbance in uremic toxins of mi-
crobiota origin, including increased serum indoxyl sulfate (IS) and phenylacetylglutamine
(PAG) in end stage kidney disease (ESKD), mostly dialysis, patients. The mechanisms
remain unclear and changes in microbiota composition were hypothesized [39]. In clin-
ical trials, sevelamer carbonate for 12 weeks did not change IS, p-cresyl sulfate (pCS),
or indole acetic acid (IAA) levels in non-dialysis CKD patients and in vitro binding to
microbiota-derived precursors p-cresol and indole was not observed while it bound IAA at
high pH in certain experimental conditions [41]. Sevelamer HCl was previously associated
with increased p-cresol (likely reflecting pCS or p-cresyl-glucuronide, see below) but not
to changes in IAA or IS in a prospective hemodialysis study [42]. However, it was also
associated with reduced p-cresol in non-dialysis patients [43–45]. It is unclear whether
the molecular form of sevelamer or the different baseline uremic toxin levels in different
CKD populations may have accounted for the different results reported. Bixalomer, only
currently available in Japan, is another non-absorbable polymer.

Lanthanum has gastrointestinal adverse effects and concerns have been raised regard-
ing bone accumulation in dialysis patients [13,25,46]. It may also interfere with vitamin K
absorption [31].

Iron-based phosphate binders are the most recent approach to hyperphosphatemia [47].
Some of them such as ferric citrate, are a source of absorbable iron that improves iron
parameters in CKD patients [25]. By contrast, sucroferric oxyhydroxide is a polynuclear
chewable iron-based phosphate binder that releases minimal amounts of iron in the gut,
resulting in less gastrointestinal side effects and potentially less iron absorption and less
impact on the gut microbiota [25,48]. In this regard, iron-based binders may change the
gastrointestinal microbiota as gut bacteria may use iron or the organic ligand [36].

4. The Microbiota and Biological Impact on CKD

The gut microbiota processes dietary components and secretes bioactive molecules
that are absorbed into the circulation. These include vitamins, short-chain fatty acids
(SCFAs) and precursors of uremic toxins, all of which may modify CKD progression or
CKD manifestations (Figure 1).
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Figure 1. Biologically active molecules produced by the microbiota of interest for chronic kidney
disease-mineral and bone disorder (CKD-MBD). SCFA: short-chain fatty acids.

4.1. Microbiota: Concept and Broad Classification

The microbiota is a complex population of microorganisms (mostly bacteria, but also
virus, archaea, and eukaryotes) that contribute to host homeostasis and disease. The bulk
(70%) of the microbiota inhabits the gastrointestinal tract [49]. Around 1014 microorganisms
live in the gut, 10-fold more than the number of human cells, and, collectively, express
250–800 times more genes than the human genome [50]. The gut microbiota contributes
to host health by promoting gut integrity [51], regulating host immunity [52], protecting
against pathogens [53] and providing nutrients and bioactive molecules such as vitamins
and SCFAs. However, the composition of the gut microbiota may be altered by drugs,
diet, stress and disease. An altered microbiota (the so-called “dysbiosis”) may contribute
to disease by failing to contribute to a healthy host–microbiota interaction or by actively
promoting the disease state through the production of microbial metabolites. Dysbiosis
is frequently characterized by decreased microbial diversity and an increase in specific
taxa [54,55]. The healthy gut microbiota is composed of up to 1000 different microorganisms.
Despite interindividual variability and intraindividual variability over time, it seems that
a functional core microbiome is common to human hosts of different gender, age and
geographic location. The most abundant bacterial phyla are Bacteroides and Firmicutes that
constitute approximately 90% of the colonic/fecal microbiota., followed by Actinobacteria,
Verrucomicrobia and a lower presence of Proteobacteria [56]. Firmicutes and Bacteroides are
carbohydrate fermenters and produce a pool of fatty acids that are used as an energy source
by the host. Besides, Bacteroides express polysaccharide A, which can induce regulatory T
cell growth and cytokine expression. [57].

4.2. Bioactive Molecules Released by the Microbiota

The microbiota releases bioactive metabolites that modulate health and disease [58].
The specific metabolites and quantity of metabolites released depends on the overall status
of the microbial community: composition, species diversity and diet composition [59].
Bioactive molecules released by microbiota include SCFAs (e.g., butyrate, propionate,
acetate and crotonate), gases (hydrogen, methane, carbon dioxide and hydrogen sul-
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phide), polyamines, polyphenols, and vitamins derived from the microbial fermentation
of undigested nutrients [60]. Bile acids are metabolized through deconjugation and dihy-
droxylation reactions by microbial enzymes such as BSH (bile salt hydrolase) and BAI (bile
acid-inducible) that are fundamental for bile acid homeostasis [53].

A growing body of literature has focused on the effects of microbial SCFAs on the
host [58]. Butyrate represents the primary energy source for colonocytes. Additionally,
butyrate modulates the epigenetic regulation of gene expression by inhibiting histone
deacetylase (HDAC) with resulting anti-cancer and anti-inflammatory properties [58,61,62].
Butyrate also binds to FFAR2/GPR43, FFAR3/GPR41 and GPR109A. Propionate is ab-
sorbed and rapidly metabolized by the liver whereas acetate is the most abundant SCFA in
the peripheral circulation [63], crosses the blood–brain barrier and controls appetite [64].
Acetate is an intermediary metabolite integrated in the Krebs cycle as acetyl-CoA that
may also behave as a ligand for GPR43 and GP341 expressed in gut, adipose tissue, liver
and pancreas, as an epigenetic regulator and as modulator of AMP-activated protein ki-
nase (AMPK) activity [65,66]. Through these actions it may improve glucose and lipid
metabolism and increase fatty acids synthesis, among others. Finally, crotonate also mod-
ulates epigenetic regulation of gene expression through histone crotonylation and has
anti-inflammatory and kidney protective properties [67–69].

SCFA have been related to the pathogenesis of kidney injury and phosphate balance.
Thus, inhibition of HDACs reversed the negative impact of albuminuria and inflammatory
cytokines on the expression of Klotho, the key co-receptor for the phosphaturic hormone
FGF-23 that additionally has kidney protective effects [15,70]. Specifically, butyrate pre-
served Klotho expression by this mechanism [71]. Histone crotonylation preserved the
expression of the master regulator of mitochondrial biogenesis peroxisome proliferator-
activated receptor gamma coactivator-1α (PGC-1α), which contributes to preserve proximal
tubule cell function, decrease kidney inflammation and preserve kidney function [69,72,73].
Additionally, either dietary fiber-induced production of SCFA or treatment with SCFA
protected from experimental diabetic nephropathy in a manner dependent on GPR43 and
GPR109A expression [74].

SCFA derive from dietary fiber fermented by the gut microbiota under anaerobic con-
ditions [75]. In this regard, the type and quantity of dietary fermentable fibers influences
the composition of the microbiota and SCFA production. Specifically, dietary fiber modu-
lates the Firmicutes to Bacteroides ratio [76]. Acetate is synthesized either via acetyl-CoA
or the Wood–Ljungdahl pathway [77]. Propionate derives from the succinate, acrylate or
propanediol pathways [78,79]. Butyrate is produced from two molecules of acetyl-CoA that
are converted to acetoacetyl-CoA. In turn, this product is converted to butyryl CoA, via
the intermediates L(+)-β-hydroxybutyryl-CoA and crotonyl-CoA. Subsequently, butyryl
CoA is transformed into butyrate by either butyrate kinase (e.g., Coprococcus comes, Copro-
coccus eutactus) or butyryl-CoA:acetyl-CoA transferase (e.g., Faecalibacterium prausnitzii,
Eubacterium rectale, Eubacterium hallii) [80,81]. The biological impact of SCFA was recently
emphasized by a study in pregnant mice, in which dietary fiber modulation of SCFA
production by microbiota resulted in long-term metabolic consequences in the newborn
through activation of SCFA receptors [82]. Specifically, propionate activation of GPR43 and
GPR41 signaling was a key mediator.

4.3. Uremic Toxin Precursors Released by the Microbiota

Amino acids may be metabolized by the gut microbiota into precursors of uremic
toxins which are then converted to uremic toxins in the liver [83,84]. Gut-derived uremic
toxins include trimethylamine N-oxide (TMAO), pCS, IS, IAA, hippuric acid, p-cresyl
glucuronide, phenyl acetyl glutamine and phenyl sulfate [85]. The biological activity of
TMAO, pCS and IS has been characterized in most detail and found to promote vascular
and kidney injury and to engage proinflammatory and profibrotic pathways [86,87].

TMAO is generated in the liver from trimethylamine (TMA), which in turn is gener-
ated from choline and carnitine by TMA lyase, a microbiota enzyme. Plasma TMAO levels
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are associated with cardiovascular events [88]. TMAO promoted atherogenesis and kidney
tubulointerstitial fibrosis by recruiting Runx2 and bone morphogenetic protein 2 (BMP2)
in vascular smooth muscle cells, driving osteogenic differentiation, and activation of the
NLRP3 inflammasome, nuclear factor kappa-B (NFκB) and transforming growth factor-
β1/small mother against decapentaplegic (TGF-β1/SMAD) signaling [89–91]. Although
Runx2 has been best characterized in the vascular calcification context, it also promoted
kidney injury [92]. However, whether TMAO also engages kidney Runx2 has not been
addressed. Organic cation transporter 2 (OCT2) mediated reabsorption of TMAO by kidney
proximal tubular cells, thus potentially exposing these cells to the toxin [93,94]. TMAO
levels may be reduced by lowering excess dietary choline and carnitine, which are compo-
nents of diverse dietary supplements. Antibiotics may also decrease TMAO levels but at
the expense of impairing microbiota homeostasis [91]. More recently, iodomethylcholine, a
TMA-lyase inhibitor, reduced TMA and TMAO generation by selectively inhibiting TMA
generation by the microbiota, attenuating kidney tubulointerstitial fibrosis and kidney
function loss [95].

pCS and IS are derived from the microbiota metabolism of tyrosine and tryptophan
to p-cresol and indole, respectively. Serum pCS and IS were increased in CKD patients
and were associated major cardiovascular events [96–98]. They circulate as protein-bound
molecules, mainly bound to albumin. Protein-binding decreased glomerular filtration and,
thus, active tubular secretion was required for excretion [99]. Protein-binding also impaired
clearance by dialysis. While p-cresol toxicity has been widely studied [100–102], p-cresol is
rapidly metabolized to pCS or p-cresyl glucuronide and initial reports of high free p-cresol
levels in CKD may have resulted from methodological issues [103]. In general, p-cresyl
glucuronide was less toxic than pCS [104,105]. pCS and IS induced inflammatory responses
in cultured proximal tubular cells [105–107], epithelial to mesenchymal transition and profi-
brotic TGF-β1 and Snail upregulation [108–116], kidney epidermial growth factor receptor
(EGFR) activation and tubulointerstitial expression of matrix metalloproteinases 2 and
9 [117], oxidative stress through reduction of glutathione levels [118] and mitochondrial
dysfunction through induction of mitochondrial fission proteins, reducing biogenesis and
decreasing mitochondrial mass due to excess autophagy [119]. Additionally, pCS caused
endothelial barrier dysfunction due to vascular endothelial (VE)-cadherin phosphorylation
by Src and decreased intercellular junctions [120–122]. Decreasing IS and pCS may improve
outcomes in CKD patients, although this is difficult to demonstrate as therapeutic maneu-
vers that decrease these toxins may also have other targets. AST-120 binds uremic toxin
precursors in the gut and is used in Japan to delay CKD progression [123]. However, clinical
trials outside Japan failed to confirm efficacy. Compliance may have been an issue, given
the high number of daily pills required (a total of 30 capsules daily) [124]. Additionally, the
sulphotranspherase inhibitors resveratrol and quercetin prevented the liver synthesis of
IS, suppressed IS accumulation and improved kidney function in experimental AKI [125].
However, these drugs have additional targets and since kidney function improved, it is
unclear whether IS levels decreased due to decreased synthesis or increased excretion.

Microbiota-derived uremic toxins and CKD-MBD. TMAO, IS and pCS may modu-
late CKD-MBD components by promoting vascular calcification and/or interfering with
bone health by suppressing bone formation and bone resorption [91,126–129]

Potential interventions. In CKD patients, the gut generation of uremic toxin precur-
sors has been reported to be stable, but the microbial species that generate SCFA were
reported to be decreased [86,130,131]. A metabolome study identified lower serum 3-
indolepropionic acid (IPA) levels in 10 patients with rapid kidney function decline than
in 10 controls. In a validation cohort, serum IPA levels in 140 CKD patients were lower
than in 144 healthy individuals 34.7 vs. 49.8 ng/mL, p < 0.01 [132]. This was contrary
to the high levels of other microbiota-derived metabolites, such as IS and pCS, as pre-
viously described for CKD. Interestingly, IPA is also a tryptophan metabolite produced
by Clostridium sporogenes that has been considered as a healthy microbiota marker, as it
was increased in individuals with high dietary fiber intake, has potent oxygen radical
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scavenging properties, activates the pregnane X receptor (PXR) (thus decreasing intestinal
permeability) and has been associated with neuroprotection and with a lower risk for
type 2 diabetes [133]. These findings should be confirmed in larger cohorts from different
continents but illustrate the potential for microbiota-targeted interventions. Preserving
bacteria responsible for SCFA generation and decreasing those species that promote uremic
toxin synthesis would be a key aim of treatment [134,135]. For example, L. salivarius BP121
protected from cisplatin-induced AKI and suppressed IS and pCS production [136]. Prebi-
otics, such as xylooligosaccharide may also promote SCFA synthesis and decrease uremic
toxins [137–139]. However, none of these therapeutic approaches is routinely used in the
clinic, pending large scale clinical trials. Prescription of low potassium diets to manage
CKD-associated hyperkalemia is not expected to be helpful for optimal SCFA synthesis, as
these diets are usually also low in fiber [140,141].

5. Impact of Dietary Phosphate on Gut Microbiota

The cellular and molecular pathways involved in the association between increased
dietary phosphate intake and increased mortality even in healthy Americans are unclear
and little is known about the impact of dietary phosphate intake on the gut microbiota [142].
Since the excess dietary phosphate of Western diets is to a great extent due to the intake
of food and beverages rich in phosphate-containing additives, excess dietary phosphate
is associated with potential confounders regarding lifestyles that may also impact on
mortality [8]. Hence, it is fundamental to understand every potential target of dietary
phosphate in the body, including how dietary phosphate interacts with the gut environment
and microbiota.

Phosphate is a prebiotic that influences the growth of microbes [143]. Interventional
studies have evaluated the consequences of calcium and phosphate supplementation on
the gut microbiota. Supplementation of both led to amorphous calcium phosphate (ACP)
precipitates in the intestinal lumen under certain conditions. ACP precipitated bile acids
and fatty acids through hydrophobic aggregation [144]. A decreased bile acid availability
can modulate the microbiota and fatty acid precipitation may modulate the biological
impact of microbial products. Calcium-phosphate nanoparticles in the gut also modulate
immune tolerance against the microbiota [145]. A recent study analyzed fecal samples of
healthy individuals on different doses of phosphate and calcium supplements: 1000 mg
phosphate, 1000 mg phosphate/500 mg calcium and 1000 mg phosphate/1000 mg calcium.
In men, the latter dose shifted the microbial community compared to the other groups and
increased acetate concentration, likely a consequence of the higher presence of Clostridium,
which release acetate from carbohydrate fermentation [144]. The combination of calcium
carbonate and phosphate supplementation increased fecal excretion of SCFA, including
acetate and propionate, but not of butyrate. These changes were not observed in women
but the sample size was small. Interestingly, phosphate intake of this magnitude may be
found in the general population and in CKD patients (some artificial beverages contain up
to 630 mg per serving) [146] and a single dose of calcium carbonate used as a phosphate
binder already contains 400 mg calcium while the recommended dietary allowance of
calcium is 1000 to 1200 mg in adults [21]. However, studies addressing the impact of
different relative amounts of calcium and phosphate on the microbiota in persons with
CKD are lacking.

Another study evaluated the microbial composition of fecal samples of persons with
prolonged stays in intensive care units (ICU). During stays in the ICU, microbial diversity
can be lost, and resistance genes can be selected. Most ultra-low-membership communities
had low virulence when grouped together, however they showed a harmful behavior
when isolated. In ICU patients, the gut microbiota could be formed by ultra-low-diversity
communities of multidrug-resistant pathogens and the shift from low to high virulence
might be caused by opioids released during critical illness. Phosphate-polyethylene glycol
[Pi-PEG] behaved as an antivirulence agent by increasing local phosphate availability and
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prevented opioid-induced virulence. Thus, local gut phosphate can drive the behavior of
bacterial communities [147].

There is more literature on farm animals, in which the question addressed is how to
best increase phosphate utilization minimizing mineral phosphate supplements. Phos-
phate supplementation in pigs influenced the composition and activity of the microbiota
in interaction with dietary calcium, modifying SCFA production [148–150]. Individual
phosphate-containing molecules or phosphate may also affect properties of pathogenic
micro-organisms, such as metabolism or virulence [150]. A high calcium/phosphate con-
tent negatively affected the intestinal abundance of certain fermentation end-products (e.g.,
reduced propionate in the large intestine) in weaned pigs [151]. In growing pigs, ileal
bacterial populations and fermentation patterns changed with the intestinal availability
of calcium and phosphate. Higher calcium availability in the gut reduced the numbers of
some Gram-positive bacteria, whereas high phosphate availability increased the growth of
strictly anaerobic bacteria [152]. Also, in broilers, feeding different amounts of phosphate,
calcium and phytase (used to increase phosphate availability from plant sources) led to a
shift in gut microbiota [148].

In summary, although not conclusive, these studies provided first hints suggesting
that dietary phosphate modulates the gut microbiota composition and behavior, potentially
having systemic effects so far understudied. The impact of calcium interactions has
further significance to the CKD situation in patients treated with calcium-containing
phosphate binders.

6. Impact of Phosphate Binders on Gut Microbiota

Besides reducing dietary phosphate absorption, phosphate binders may alter the gut
microbiota [36]. The effects of phosphate binders on gut microbiota may depend on the
specific compound used. Several mechanisms have been described including decreased
phosphate availability and resultant decrease of phosphate-dependent bacteria, binding of
non-phosphate molecules, release of iron or formation of phosphate complexes (e.g., ACP)
that may in turn precipitate other bioactive intestinal molecules that modulate bacterial
biology [144,153,154].

As discussed in the prior section, in healthy individuals, calcium carbonate sup-
plementation modified the gut microbiota and increased fecal excretion of SCFA [144].
However, these changes were only observed in men and not in women, and CKD patients
were not studied. In hemodialysis patients, calcium carbonate was associated with a sig-
nificant increase of the gut microbial dysbiosis index and a reduction of microbial species
diversity when compared to ferric citrate. Ferric citrate was associated with an increased
abundance of Bacteroides and decreased abundance of Firmicutes. Members of the order
Lactobacillales were enriched in patients treated with calcium carbonate, whereas taxa
of the genera Ruminococcaceae UCG-004, Flavonifractor, and Cronobacter were enriched in
patients treated with ferric citrate [155].

There is inconsistent evidence regarding sevelamer and microbiota, potentially de-
pendent on species, baseline clinical conditions, and length of follow-up, among other
confounders. In mice with non-alcoholic steatohepatitis, sevelamer reversed and prevented
progression of liver injury in association with changes in the microbiota population and bile
acid composition, including reversing microbiota complexity in the cecum by increasing
Lactobacillus and decreasing Desulfovibrio [156]. However, to what extent the microbiota
changes were primary or secondary to improved liver injury is unclear from the exper-
imental design. In this regard, no changes in fecal microbiota were observed in a pilot
double-blinded controlled trial of persons with type 2 diabetes randomized to sevelamer
or placebo [157].

Lanthanum carbonate administration for 12 weeks to hemodialysis patients was asso-
ciated with reduced diversity of the gut microbiota characterized by decreased Parvimonas,
Gemella, Centipeda, Chryseobacterium, Pelomonas, Curvibacter and unclassified Rhodocy-
claceae and changes in their network complexity [153].
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Iron contained in phosphate binders could shift the gut microbiota as oral iron supple-
ments do. This specially applies to ferric citrate which is associated with increased iron
availability, as discussed above for the calcium carbonate/ferric citrate comparison [47]. In
subtotally nephrectomized rats, 4% ferric citrate increased fecal alfa diversity, while the
relative abundance of Firmicutes decreased and the relative abundance of the Akkermansia
genus and the Clostridiaceae and Enterobacteriaceae families increased, compared with
untreated CKD rats [158]. Ferric citrate also increased levels of Tryptophanase-possessing
bacteria, which are linked to indole and p-cresol production. However, plasma levels
of these molecules were not increased. The altered gut microbiota was associated to im-
proved kidney function, adding a further source of confusion when interpreting microbiota
changes [158].

Overall, the impact of phosphate binders on gut microbiota is starting to be recognized
but is still incompletely understood. Detailed clinical studies are needed to characterize
their impact on gut microbiota, host exposure to SCFAs and precursors of uremic toxins,
and potential relation of this interaction with outcomes. Modulation of gut microbiota by
phosphate binders may contribute to the observed results in clinical studies assessing the
impact of phosphate binders on circulating levels of uremic toxins of gut origin, beyond
any direct interaction of binders with these toxins or their precursors.

7. Impact of Gut Microbiota on CKD-MBD

There is also evidence that the gut microbiota may modulate CKD-MBD.
Vitamin D. Vitamin D promotes calcium and phosphate absorption in the gut, regu-

lates immune functions and influences the gut microbiota [159–161]. Vitamin D deficiency
in newborn mice changed microbiota composition later in life, and following bacterial
infections, dysbiosis was more prominent in patients with vitamin D deficiency [161].
Moreover, vitamin D deficiency decreased gut vitamin D receptor (VDR) expression [162]
and this, in turn, generated dysbiosis [163]. However, there is less information on how the
microbiota modifies vitamin D availability or activity. A microbial metabolite generated
from bile acids, lithocholic acid (LCA), activated the VDR [164]. LCA may compete with
vitamin D for VDR binding and, for example, trigger calcitriol degradation or activate VDR
to modulate Treg populations [165]. Additionally, SCFA may increase VDR expression and
hydroxylases from some bacteria may activate vitamin D (reviewed in [166]).

Parathyroid hormone (PTH). PTH modulates bone remodeling, promoting both bone
formation and bone resorption depending on whether bone cells are exposed to PTH
continuously or intermittently [167]. The gut microbiota may modulate PTH impact on
bone health. Butyrate produced by the gut microbiota contributes to gut-bone commu-
nication in young female mice. Butyrate activation of GPR43 signaling in dendritic cells
and GPR43-independent signaling in T cells increased Treg differentiation in bone marrow,
contributing to PTH anabolic activity in bone. Moreover, nutritional supplementation
with the probiotic Lactobacillus rhamnosus GG (LGG) increased butyrate production and
stimulated bone formation [168].

Besides its contribution to CKD-MBD, hyperparathyroidism is one of the causes of
osteoporosis. In murine hyperparathyroidism, PTH caused bone loss in mice colonized
with Th17 cell-inducing taxa segmented filamentous bacteria (SFB). Indeed, bone loss may
be induced by TNF generated in the small intestine in response to bacterial products, such
as flagellins or LPS. In mice with a depleted microbiota, PTH administration and low
calcium diet did not induce bone loss, but SFB was sufficient for PTH to exert the catabolic
activity. In this regard, trafficking of TNF + T cells and Th17 cells from the gut to the bone
marrow was required for PTH-induced bone loss [169]. These results provide insights into
novel therapeutic approaches to bone loss by either supplementing with probiotics [168]
or targeting the microbiota and blocking T cell migration [169]. However, it is unknown
whether these mechanisms are active in or modified by CKD.

Phosphate. The gut microbiota may also modify the phosphate balance. In a placebo-
controlled clinical trial, oral administration of B. longum decreased serum phosphate
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in hemodialysis patients. It was proposed that probiotics increased calcium ionization,
favoring calcium binding to phosphate and, thus, reducing phosphate absorption [170].

Additionally, research in farm animals is contributing to increase our understanding
of the interactions between different sources and amounts of phosphate and the gut
microbiota. The problem to be solved in farm animals is how to increase phosphate
utilization, that is, how to increase the phosphate-accretion/phosphate-intake ratio to
minimize the need to supplement dietary phosphate. However, insights obtained in
studies aimed at understanding how to maximize phosphate absorption may also provide
insight into what maneuvers result in lower phosphate absorption. Phosphorus utilization
is a heritable tract in farm animals that may be influenced by the gut microbiota. In
Japanese quail, seven of 55 genera of microbiota were more abundant in high phosphorus
utilization animals and Bacteroides played an important role in phosphorus utilization [148].
In this regard, inositol phosphates (InsPx) are the major source of phosphate in plant seeds
and need phytase activity to release phosphate. This may be provided by microbes as in
non-ruminant, monogastric animals, phytase activity is very low. Molecular adaptations to
low-phosphate diets might contribute to the cleavage of phosphate from InsPx and enhance
phosphate absorption in the gastrointestinal tract [148]. Understanding these molecular
adaptations and how to combat them may contribute to design novel approaches to further
decrease phosphate absorption in CKD patients.

8. New Tools: Phosphate-Accumulating Organisms

Phosphate-accumulating organisms (PAOs) are specific microbes that accumulates
phosphate in the form of polyphosphate. PAOs are now under intense scrutiny as a poten-
tial method to extract phosphate from wastewater in a manner that can allows phosphate
recycling [171]. These studies imply the identification and isolation of PAOs and methods
to assess polyphosphate contents [171–173]. Similar techniques may eventually be used to
characterize gut microbiota PAOs that prevent phosphate absorption in the gut in CKD
patients, facilitating phosphate excretion in feces. Thus, similar to PAOs removal of phos-
phate from wastewater, identification of PAOs in the normal gut microbiota, and fostering
their growth may promote phosphate accumulation in PAOs. Phosphate accumulated
in PAOs in the form of polyphosphate will not be available for absorption and will be
excreted in feces, together with the PAOs (Figure 2). For example, Betaproteobacteria-,
Cytophagia-, and Chloroflexi-class bacteria were identified as PAO and these classes are
present in human guts [173,174]. Oxalobacter formigenes, an oxalate-degrading anaerobic
bacterium in the human gut of potential interest for the treatment of oxalate urolithiasis and
hyperoxaluria, belongs to the Betaproteobacteria class [175]. Interestingly, an interaction
between SCFA and PAOs has been described [176]. In this regard, butyrate and propi-
onate support PAOs [176,177]. Still wastewater research is performed at environmental
conditions that may not be relevant for the human gut. Thus, adaptation of PAO research
findings to gut environment conditions should be specifically pursued.
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9. Conclusions

The role of the microbiota in the genesis of protein-bound toxin precursors is well
established. However, much less is known regarding the interaction between phosphate,
another uremic toxin, and the microbiota. Evidence so far indicates that both dietary
phosphate and phosphate binders may modulate the microbiota composition and the
bioavailability of microbial products such as biologically active SCFAs and vitamin K
(Figure 3). Furthermore, the microbiota may modulate dietary phosphate disposal and
absorption, as well as CKD-MBD, for example, by modulating PTH actions on bone
(Table 2). However, the precise molecular mechanisms for the phosphate-microbiota-host
crosstalk and overall clinical impact remain unclear. In this regard, while experimental
studies pointed the way, human studies are needed to understand the impact of dietary
phosphate on the microbiota and potential clinical consequences and, conversely, the
impact of the microbiota on phosphate balance and CKD-MBD manifestations. Unravelling
these relationships may help develop novel therapeutic approaches for CKD-MBD that
may borrow concepts from other areas of science such as phosphorus utilization PAO
research. In this regard, key research questions on the relationship between phosphate and
the microbiota and its clinical impact remain to be addressed (Table 3).
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Table 2. Key recent findings on phosphate, CKD-MBD and microbiota.

The gut microbiota is a source of beneficial bioactive molecules (e.g., SCFA, IPA, vitamin K)) and
of uremic toxin precursors that collectively may impact host health including CKD and
CKD-MBD.

The source and amount of dietary phosphate and the dietary calcium:phosphate ratio may
modify the gut microbiota composition and properties.

Treatment for CKD-MBD, including phosphate binders, may influence the gut microbiota
composition and properties in a binder-specific manner.

The gut microbiota may modulate CKD-MBD through SCFA-mediated modulation of Klotho
expression, modulation of vitamin D and PTH activity, thus modulating bone health, serum
phosphate and phosphate balance.

Phosphorus utilization research in farm animal research explores how to modulate phosphate
uptake from the diet.

Phosphate-accumulating organisms (PAOs) are used in wastewater research to remove phosphate
for the microenvironment.

Findings from phosphorus utilization and PAO research may be applied to prevent dietary
phosphate absorption in human CKD.
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Table 3. Key research questions on phosphate and microbiota.

What is the optimal dietary phosphate intake and optimal form of dietary phosphate from the
point of view of a healthy microbiota? In the general population? And in CKD patients?

What is the optimal phosphate binder from the point of vew of a healthy microbiota?

What phosphate binder best promotes the microbiota production of beneficial and bioavailable
short chain fatty acids?

What is the optimal phosphate binder to decrease uremic toxins production by the gut
microbiota?

What components of the gut microbiota minimize the adverse consequences of CKD-MBD by
modulating vitamin D, PTH or other key host activities?

How can we promote and maintain such microbiota? Can dietary interventions, prebiotics,
probiotics or symbiotics achieve this?

Are there phosphate-accumulating organisms (PAO) in the gut microbiota that can be used to
increase the fecal excretion of dietary phosphate?
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